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I n  this paper we examine the stability of a two-dimensional wake profile of 
the form u ( y )  = Urn( 1 - r e--sY2) with respect to a pulsed disturbance at a point 
in the fluid. The disturbed flow forms an expanding wave packet which is con- 
vected downstream. Far downstream, where asymptotic expansions are valid, 
the motion a t  any point in the wave packet is described by a particular three- 
dimensional wave having complex wave-numbers. I n  the special case of very 
unstable flows, where viscosity does not have a significant influence, it is possible 
to evaluate the three-dimensional eigenvalues in terms of two-dimensional ones 
using the inviscid form of Squire’s transformation. I n  this way each point in the 
physical plane can be linked to a particular two-dimensional wave growing in 
both space and time by simple algebraic expressions which are independent of 
the mean flow velocity profile. Computed eigenvalues for the wake profile are 
used in these relations to find the behaviour of the wave packet in the physical 
plane. 

1. Introduction 
Unbounded flows, such as jets and wakes, are very unstable a t  quite moderate 

Reynolds numbers and are easily disturbed from the steady laminar state. Small 
input disturbances generate motions composed of linear combinations of the 
simple waves of linear stability theory. One of the simplest forms of excitation is 
a pulsed source at some point in the flow. The wave packet, which arises from 
this disturbance through selective amplification and interference of the various 
modes generated by the source, is of some practical interest in transition studies. 
Natural transition often occurs through the formation and growth of turbulent 
spots which are presumably initiated by these linear wave packets. 

The motion generated by a pulse perturbation (delta function) can be found 
by evaluating a double integral of all possible eigenmodes over all wave-numbers. 
I n  general it is not possible to evaluate this integral in a closed form, but since 
most interest is centred on the form of the solution far from the source, asymp- 
totic expansion techniques can be employed. Previous solutions by Brooke 
Benjamin (1961) and by Criminale & Kovasznay (1962) used expansions about a 
fixed point in the wave-number frequency domain. I n  this paper we use more 
general asymptotic expansions which enable us to link the motion at any point 
in the physical plane to a particular eigenmode having complex values of wave- 
number and frequency. It would in principle be possible to compute such modes 
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and thus examine the structure of the disturbed flow in the physical plane, but 
such computations would be very time consuming and it is thus worth considering 
possible simplifying approximations. 

In a previous paper discussing the wave packet in a boundary layer (Gaster 
1968), it was shown that eigenvalues for any mode with complex wave-numbers 
could be obtained from purely temporally increasing modes provided the ima- 
ginary part of the wave-numbers were small. This small amplification approxi- 
mation coupled with Squire’s (1933) transformation, which relates any temporally 
increasing oblique wave to a two-dimensional one at a lower Reynolds number, 
enabled the motion over the whole region of the wave packet to be obtained in 
terms of the two-dimensional temporally growing waves usually discussed in 
stability theory. 

Very unstable flows admit waves with large amplification rates and the ex- 
pansion techniques employed for the boundary-layer problem cannot be used. 
However, since these very unstable waves are almost unaffected by viscosity at 
high Reynolds numbers, the eigenvalues are adequately defined by the inviscid 
disturbance equation. The inviscid form of Squire’s transformation allows a11 
three-dimensional waves, including those with complex wave-numbers, to be 
related to two-dimensional ones. This simplification, which is used here, enables 
the asymptotic expansions to be evaluated quite generally. The motion at any 
point in the physical plane can then be found in terms of parameters defining 
two-dimensional modes which have complex values of both wave-number and 
frequency. This analysis is applied to the wake profile with the aid of a digital 
computer. 

2. Formulation of the problem 
We suppose that the mean flow is approximately parallel and we linearize 

the equations of motion with respect to the disturbance to obtain a set of homo- 
geneous equations which admit solutions of the form 

Q(y; x, z ,  t )  = u ( y ;  a, b,  w )  exp {i(ax + bz - wt ) ] ,  

3(y; x, z ,  t )  = v(y; a, b, w )  exp {i(ax+ bz - wt)), 

&(y; x, z ,  t )  = w(y; a, b,  w )  exp {i(ax + bz - wt)]  

and $(y; x, z ,  t )  = p(y; a, b, w )  exp {i(ax + bz - wt) ] ,  

where & , 8  and 8 are the perturbation velocities in directions x, y and z respec- 
tively; and @ is the pressure perturbation. The wave-numbers a and b, in the 
x- and z-directions, may be complex. 

The disturbance produced by some sort of pulse excitation at  a point on the 
y-axis will be given in the form of a double integral to be evaluated over a and b. 

Following Gaster (1968) we obtain 

j (1)  

6(y; x, z ,  t )  - 1 exp {i(ax + bz - wt))dadb, (2) 
ca Cb 

where the eignevalue w is a function of both a and b. 
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Taking the first term of the asymptotic expansion for large t ,  x / t  and z/t  
being treated as of order unity, and neglecting a phase factor we obtain the form 

exp (i[a*x/t + b*z/t - @(a*, b*)] t}  
V N  

b*) a2w(a*, b*) - (az@@*, b*))2]*’ 
ab2 aaab 

where a* and b* are chosen such that 

x aw z aw 
- = -(a*, b*) and - = - (a*, b*), t aa t ab 

(3) 

(4) 

and a*, b* and @(a*, b*) are complex. 
Note that the above result is only valid if the denominator is not small. 

3. Squire’s transformation 

two-dimensional parallel mean flow become 
Using the perturbations given in (1) the linearized equations of motion for a 

i vdU 

-{v 
aR 
- i  
aR -{w”-(a2+b2)w} = 

together with the equation of continuity 

i(au+ bw) +v’ = 0. 

R is some convenient Reynolds number of the mean flow; the non-dimensional 
wave-numbers a and b, and the frequency w ,  being normalized on the basis of 
the chosen scale of length and velocity. Primes denote differentiation with respect 
to y and the mean flow is U(y). These equations can be reduced to the form 

(u-:) {v”-(a2+b2)v}- U”v = ~ { ~ ~ ~ - 2 ( a ~ + b ~ ) v ” + ( a 2 + b z ) ~ v } .  - 8  . ( 5 )  aR 

The Orr-Sommerfeld equation which describes two-dimensional waves of the 

(6) 

form 6(y; x, t )  = v (y ;  a,  p) exp (ifax- Pt)> is 
- -z  (U  -PI.) (0” - a%) - U“V = - (ViV - 2a2v‘ + a4v), 
aR, 

where R, is the Reynolds number of the two-dimensional flow. Squire (1933) 
showed that equations (5) and (6) are equivalent when 

a2 = a2+b2, /3/a = o/u and aR, = uR. (7 )  

Thus for temporally growing waves, which have a and a real, we can relate any 
three-dimensional mode to a two-dimensional one at  a lower Reynolds number. 
However, in the more general case when wave-numbers are complex, this 

51-2 



804 M .  Gaster and A .  Duvey 

simple transformation shows that any three-dimensional mode can only be 
related to a two-dimensional mode with a complex Reynolds number uR/a. 

In unbounded flows viscous effects may usually be neglected if the Reynolds 
number is sufficiently large, and it can be shown that solutions of the Orr- 
Sommerfeld equation satisfy the second-order inviscid equation in the limit of 
vanishing viscosity except for those eigenfunctions which are singular. These 
singular solutions arise at  the critical layer where { U ( y )  - (Pla),.) is zero if ( P / E ) ~  
is also zero. Thus solutions of the inviscid equation with zero ( P / E ) ~  are not valid 
approximations to solutions of the full Orr-Sommerfeld equation and they can- 
not therefore be used in this analysis. 

In  the present problem where we have a complex 'Reynolds number' it  can 
again be shown that solutions of the inviscid equation tend to solutions of the 
full equations at  large Reynolds numbers provided a,. is not small. Some care is 
needed here as the inviscid equation also admits conjugate solutions. Tollmien 
(1929) showed that in the usual case of positive real Reynolds number the self- 
excited modes, which have ( P / E ) ~  positive, must be chosen. In  the case of a large 
complex parameter we again find that the self-excited waves must be taken 
when (ala),. is positive, but the damped mode is the proper branch when (a/a),  
is negative. When (a/a),  is very small the inviscid solutions do not represent 
solutions to the full equations and we must avoid using these modes in this 
discussion. 

The three-dimensional wave 

- exp {i(ax + bx - w t ) }  

at large Reynolds numbers can be linked with the inviscid two-dimensional mode 

N exp {i(ax - Pt)), 

where a2 = a2 + b2 and aw = UP. In  general a, b,  a, P and w are complex and the 
restrictions mentioned previously apply. 

If the two-dimensional waves are described by the eigenmode relation 

P = a E ( 4 ,  (8) 

w = a ~ ( a )  or w = u ~ ( a z +  b2)*, (9) 

the related three-dimensional modes are given by 

where the functions E in (8) and (9) are identical. 

4. The solution in the physical plane 

(4) and (9), 
The link between wave-number space and the physical plane is provided by 

x aw 2 aw 
~- = -((n*,b*) and ~ = --(a*,b*), 
t aa t ao 

where w = aE(a2+b2)% 

Using these eigenvalue relationships between two- and three-dimensional 
waves we can obtain an equation for xlt and z / t  in t'erms of a*, b* and E.  
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Dropping the asterisk we obtain 

Primes denote differentiation with respect to a and E = P/a. Eliminating 
a and b from (10) provides the equation linking the physical plane to the a-plane, 

By splitting this complex equation into real and imaginary parts and noting 
that xlt and zlt are purely real we can obtain xlt  and zjt in terms of the real and 
imaginary parts of P/a and dplda. 

The equation defining the disturbance in the physical plane (3) may be written 

exp {i[a(a2 + b2)& E'] t}  
71 N 

Equations (11)  and (13) define the motion at any point in the physical 
(xlt, z/t)-plane in terms of the eigenvalues of two-dimensional modes. 

5. Results 

(1  1)  and ( 1  3) were computed for the wake profile 
The eigenvalues and other parameters derived from eigenvalues arising in 

u(y )  = Um{l - 0.692 exp ( - 0 . 6 9 3 ~ ~ ~ ) ) .  

This profile was used by Sat0 & Kuriki (1961) for calculating temporally 
growing waves which they compared with their experiments. Davey also used 
this profile for the determination of spatially growing eigenvalues. 

Figure 1 shows the a-plane with contours of P, and pi for the self-excited 
branch with (@/a), > 0. These modes transform ink0 growing oblique waves 
only when (a/a),  is positive, that is to the right of the line OD which is defined by 
the condition 

x-e g[ , (dq;yJ = O .  

Only the complex conjugate of points to the left of OD can be transformed to 
three-dimensional waves, but as these modes are highly damped they are of no 
particular interest in the present context. 
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The condition (8/3#aT) = 0, which transforms into z/t = 0 in the physical 
plane, is shown by the line AB. To the right of this line ( z / t )2  is negative and no 
meaningful solutions exist. The two points A and B transform into points of zero 
amplification rate and the region between them contains amplified disturbances. 
The neutral boundaries of the wave packet which pass from A to 0 and from 
B to D are also shown on figure 1. Thus the region enclosed by the lines A-B-D-0 
contains all the two-dimensional eigenvalues that transform into amplified 
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FIGURE 1. Complex a-plane. 
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regions in the physical plane. Figures 2 and 3 indicate how this region maps onto 
the physical plane, figure 2 showing lines of constant aT and a, and figure 3 
contours of constant amplification rate. 

Some care is needed in applying (1 1) and (13) to the inviscid two-dimensional 
eigenvalues, as there are regions where the analysis is invalid. For example, the 
inviscid eigenvalues are not good approximations to those of the full equations 
of motion when (,B/a)i is small and thus the solution in the region around 0, in 

X l t  
FIGURE 2. Contours of 01, and cli on the physical plane. 

0.4 r Neutral boundary 

0.3 

u 0.2 . 
0.1 
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x/t  

FIGURE 3. Physical plane showing amplification contours. 

both the a-plane and the physical plane, should be treated with caution. Vis- 
cosity must also play a dominant role in the region of small (a/a), and the dis- 
continuous behaviour along OD, shown in figure 3, will no doubt be smoothed 
out in any real physical problem. The asymptotic expansion (13) is clearly in- 
valid where the denominator is zero, and more terms need to be used t o  describe 
the behaviour there. The denominator of (13) does vanish at  a point P, which is 
marked on figures 1 , 2  and 3, but since this relates to a damped region of the wave 
packet is it not of great significance in the present example. 
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6. Discussion 
The shape and amplification pattern of a wave packet has been obtained for a 

typical wake profile. The amplified region is roughly elliptical except near the 
leading edge where the present inviscid theory predicts a discontinuity. Although 
viscosity would smooth out such a discontinuity it seems clear that there will 
be large velocity gradients present in this region. These large gradients could 
introduce non-linear effects and one might expect this forward region of the wave 
packet to be the fi'rst to break down into some form of turbulence. 

We wish to thank Prof. J. T. Stuart for some helpful discussions. This work was 
carried out as part of the general research programme of the National Physical 
Laboratory. 
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